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Abstract— Surface and needle-based electromyography
signals are used as diagnostic markers for detecting
neuromuscular disorders. Existing systems that are used to
acquire these signals are usually expensive and invasive in
practice. A novel 8 channel surface EMG (sEMG) acquisition
system is designed and developed to acquire signals for
various upper limb movements in order to evaluate the
motor impairment. The real time sEMG signals are generated
from the muscle fibre movements, originated solely from
the upper limb physical actions. Intuitively, sEMG signals
characterize different actions performed by the upper limb,
which is considered apt for assessing the improvement for
post stroke patients undergoing routine physical therapy
activities. The system is designed and assembled in a view
to make it affordable and modular for easier proliferation,
and extendable to motor classifying applications. The system
was validated by recording realtime sEMG data using six
differential electrodes for various finger and wrist actions.
The signals are filtered and processed to develop a machine
learning (ML) model to classify upper limb actions, and
other electronic systems are designed in the portable form
around the patch electrodes. A classifier was trained to
predict each action and the accuracy of the classifier was
assessed across different usage of channels. The accuracy
of the classifier was improved by optimizing the number of
electrodes as well as the spatial position of these electrodes.
The sEMG circuit designed has the capacity to characterize
wrists, and finger movements. The improvement observed
in the sEMG signals should benefit the physiotherapists to
plan further protocols in the prescribed rehabilitation program.

Clinical relevance— A portable and low-cost sEMG system
allows patients to have easy access to motor functionality
assessments as well as aid physiotherapeutic exercises. Ready
access to such a system will not only allow physicians to
perform motor impairment studies but also help to quantify and
gauge the rehabilitation progress through periodic and frequent
assessments of the motor system.

I. INTRODUCTION

Extremely low electric currents are generated from the
muscle fibres due to the physical movement of human body
driving the muscle movements [1]. These low currents are
observed to have a pattern for different movements, and are
commonly measured non-invasively by placing electrodes
over the skin. The signal acquired by the electrodes are
known as surface Electromyography (sEMG) signals that
ranges from µV to mV at the surface of the skin, and is

*This work was supported by EHRC at IIIT-Bangalore
1International Institute of Information Technology, Bangalore, Bangalore-

560100, India vinay.chandrasekhar@iiitb.org
2NIMHANS, Bangalore-560029, India

usually observed at 50-150 Hz frequency spectrum band.
Surface EMG is widely accepted in medical fraternity due to
its hassle free application of electrodes on the patients under
investigation, and minimum turn around time to determine
the signals. The motor functionality of muscles can be as-
certained using the sEMG signal, as the amplitude and other
characteristics of the signal measured are directly correlated
with the muscle activity [2], [3]. Hence sEMG is commonly
used to evaluate motor functionality of post stroke patients
and assess the degree of impairment [4], [5]. Accurate motor
impairment assessments could help physicians understand
the type and severity of the impairment, which will help in
better planning of physiotherapy. Periodic motor assessments
would help in gauging the motor improvement and helps
guide further course of rehabilitative measures [6].

Commercially available sEMG system allows multi-
channel and raw-data collection, and are usually either
expensive, bulky, or sparsely available, leading to highly
inaccessible to the patients under need. A two channel
low cost EMG signal acquisition and processing circuit is
described in [7], [8], however picking all possible muscle
signals from two channels is not adequate to character-
ize upper limb actions, hence multi-channel sEMG signal
acquisition and processing system in a compact form is
required. An ultra low power microcontroller was considered
for implementing EMG signal processing algorithms and
evaluate muscle signals as reported in [9], hence a similar
system for multi-channel, with additional characterization of
upper limb actions is needed.

In the past, correlating muscles for specific activities are
reported [10], [11], [12], however the finer movements of
the upper limb are still not characterized efficiently, hence
a multichannel sEMG signal with spatial positioning of
electrodes for picking specific muscle movements needs
thorough investigation. Characterization of finer movements
will assist in recovery of partially deformed parts of the upper
limb, especially for patients suffering from specific parts of
fingers, or wrist. A wearable system with dry electrodes to
measure EMG signals was also investigated in the past for
measuring the agility index [13]. Again the system lacked the
characterization of finer movements, hence the system may
not be directly applicable for rehabilitation of post stroke and
neuromuscular disorder patients.

EMG signal is inherently stochastic in nature and contains
noise, hence special signal processing technique with prior
feature extraction is generally a preferred method [14].
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Fig. 1: Block diagram of the EMG signal acquisition system

Fig. 2: Circuit diagram of a single channel EMG amplifier

The paper proposes not only a circuit for EMG signal
acquisition, but also a real time classifier technique for
characterizing upper limb movements. Classifier techniques
in the form of Linear Discriminant Analysis (LDA) and
Support Vector Machine (SVM) were applied for similar
upper limb movements [15] and accuracy for five channels
EMG system were reported earlier. However the spatial
arrangement of patch electrodes towards higher accuracy are
not studied in the past, hence an optimized number, and
spatial position of electrodes to cover all upper limb actions
is much needed and critical for a robust system design. In
this paper, an 8-channel sEMG system is proposed, with real
time classification capability, and an optimized placement
of electrodes to acquire signals and characterize upper limb
actions are presented. The device is envisioned as a sensory
system applicable towards domestic rehabilitation assessment
for post stroke patients, considered an alternative to the
supervised assessment currently practiced. The physicians
can modify the prescribed set of therapy based on the sEMG
signal assessment report, and chart a plan towards complete
recovery of upper limb.

II. DESIGN

The sEMG signal acquisition system was designed to be
modular, with 8 separate channels, and the overall fabrication
of the system was made cost effective. Major components of
the system are: the electrodes in the form of patch connected
to front end analog design for signal amplification and
conditioning, followed by signal digitization and last stage
consisting of storage, and analysis, as shown in the Figure 1.

In the design, bipolar electrode architecture was preferred
over the unipolar architecture due to the following reasons.
Bipolar architecture allows the strategic electrode placement
on various muscle groups with different spatial configura-
tions, allowing the choice of acquiring differential signal
between two distinct points along the length of a muscle
fibres. In addition, bipolar system favourably rejects common
mode noise better than the unipolar configuration. Single
use gel adhesive electrodes (3M Red Dot Sticky Gel 2560)
were used in the design as they are affordable in the order
of 10 cents per electrode, and are widely available. These
electrodes provide a very high signal quality while requiring
minimal to no skin preparation. Alligator clips connected
these electrodes to the front end circuitry. Ideally the wires
carrying signal from the electrodes to the circuitry should be
shielded to reduce noise. The wires were designed to be short
in length and the differential pairs were twisted together to
avoid noise.

The analog circuitry was designed to accommodate eight
simultaneous differential channels. The analog system was
designed with an intention to use minimal circuitry. An in-
strumentation amplifier was used as the first stage to amplify
the differential signal, that rejects common mode noise, while
preserving and amplifying differential signal. Hence a differ-
ential amplifier with a high common mode rejection ratio was
chosen. A natural choice would be to use an instrumentation
amplifier (Fig 2 U1 INA106U/2K5) such as the INA106
series, which meets the required specifications. The gain of
this instrumentation amplifier is fixed. This signal was further
amplified in a second stage (Fig 2 U2A LM358DT) which
has a variable gain controlled by a potentiometer and passed
to an active high pass filter (30Hz cutoff frequency) circuit
as shown in the Figure 2. The buffered output (Fig 2 U2B:
LM358DT) of the filter is directly digitized and stored using
an ADC. The instrumentation amplifiers and the active filters
are housed on a PCB. The overall setup with 8 channel
electrodes are shown in the Figure 3(a). The PCB was
fabricated using a additive PCB printer, where conductive
ink was deposited onto the PCB, then appropriate SMD
components were reflowed to get the printed circuit as shown
in the Figure 3(b). The filtered analog signal was then used
as an input to the analog to digital converters in a suitable
microprocessor such as the Atmel SAM3X8E ARM Cortex-
M3 board. The reference of the ADC was adjusted to convert
complete analog signal swing to digital. The microprocessor
sampled all 8 channels data at the preset sampling rate, and
transferred data to a system where it is stored and processed
further. A snapshot showing ARM cortex microprocessor
and potentiometer to adjust ADC level is shown in the
Figure 3(c).

The EMG signal is dominant between 50 Hz to 150 Hz.
The system samples the signal at 20kHz frequency, which
more than satisfies the requirements of EMG recording. The
acquired signal is processed to remove any DC component
and noise using digital filters. Two major filters were de-
signed: a notch filter to remove any AC power noise around
50 Hz and a band-pass filter from 30Hz to about 300Hz
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Fig. 3: Prototype showing (a) sEMG signal acquisition
system with electrodes, (b) Image of sEMG printed circuit
board, (c) Image of microprocessor and ADC setup that is
interfaced to the acquisition system.

to eliminate other signal noise. In this processed signal,
any EMG signal would appear as an oscillating wave with
changing amplitude. For further analysis, the processed EMG
signal is passed through a moving window RMS calculator,
to estimate energy of the signal at discrete time points. The
moving window RMS calculator depicts the strength of the
EMG signal for different upper limb actions performed over
time.

III. EXPERIMENTAL ANALYSIS AND RESULTS

The overall sEMG setup was applied to record wrist
movement, and flexion action of the fingers. Six channels
from the eight designed channels were used and mounted
radially on the arm as shown in the Figure 4. Six pairs
of electrodes completely covered the circumference of the
forearm, where the electro-muscular activity was detected.
On posterior side of the arm, the muscle density is less when
compared to the anterior side, hence only two electrodes
were patched on the sides, that provided adequate signal
level. The individual fingers of upper limb were actuated
for flexion action, and signal response was experimentally
acquired by the EMG acquisition system.

A. Principle of operation

Figure 5 shows RMS response of the sEMG signal for
two channels over time, characterizing the flexion action of
individual fingers. Both channels show a sharp rise in the
signal level, attributing to the movement of the individual
fingers. The amplitude of the signal is different for each of
the channel, which is fundamentally related to the source
of the EMG signal generated due to the muscle fibres at
different locations, away from the placed electrodes. The
generation of the EMG signals at varying locations leads

(a) (b)

Fig. 4: Schematic representing placement of six electrodes
with (a) three electrodes on the posterior side of the arm,
and (b) three electrodes patched on the anterior side. Image
redrawn from [16]

Fig. 5: EMG signal response for individual finger move-
ments, using two channel system.

to the difference in the magnitude of signal recorded at
each electrode. As observed in the Figure 5, the amplitude
signature is used to estimate the origin of the muscle set
signal, and characterize the performed action. Similar change
in signal level is detected for all six channel based EMG
system when placed on arm. The change in signal level
is detected in each of the six electrodes when each of the
fingers were actuated. If each action is repeated exactly by
the person, the performed action is actuated using a set of
muscles fibres and the amplitude of signal picked up by the
electrodes has a unique fingerprint. However, every time an
action is performed, the generated EMG signal is different,
due to various factors including difference in force applied,
sets of muscle fibres used, and muscle fatigue [17]. Hence to
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overcome this issue, the absolute value of the EMG signal is
seldom used. Instead, the EMG data is normalized and then
used for further analysis.

B. Feature extraction

The proposed method when applied for every action, RMS
waveform for all six channels were generated, with maxi-
mum value of RMS from the six channels were considered
as absolute valued feature vector. A fixed-length moving
rectangular window was used for calculating the RMS value.
The length was determined by trail and error to maximise
the RMS energy difference between actuation and relaxation.
Vector consisting of six RMS values were further normalized
and reduced to vector of length five, by considering the ratio
of RMS of each of five channels to one chosen channel RMS
value. Vector of length five is utilized in the classifier to
predict the upper limb actions. The choice of one of these
RMS values as the normalization factor is also a variable,
which heavily affects the classifier accuracy.

C. Action classification and model accuracy

Fig. 6: EMG signal classification accuracy for 4 fingers
vs. the number of electrodes used. (*, *, ..) represents the
electrode combination corresponding to that accuracy.

sEMG signal was collected for all the actions including
finger flexion and the wrist movements from an individual.
In total 331 actions were captured and the features were
extracted and normalized. The data was divided into 80%
training and 20% testing classes. The training features were
then used to train support vector machine (SVM [18]) based
classifiers. Several permutations and combinations were tried
to get the optimal feature creation and find the maximum
testing accuracy with minimum number of electrode usage.
Model for different target classes were investigated. One such
case is the prediction model for 4 finger classes, in which
data pertaining to only those 4 finger movements were used
to calculate the accuracy. Next, all possible variable states
were tried to attain maximum accuracy. The classifier model
was also investigated for different number of electrodes being
used. It was felt that using only a subset of electrodes may

achieve a higher testing accuracy. In order to investigate the
same, all combinations of electrode choices were considered
in the experiments. For example, in one such case, electrodes
1, 3, and 5 as a combination is used to generate features
and calculate accuracy. Further among the chosen electrode
subset, the choice of the electrode used for normalization is
also a variable. The result of one such experiment with 4
target finger actions is shown in Figure 6, where each data
point (blue star) represents a unique variable set of electrode
subset and normalizer choice, which resulted in certain
accuracy. The orange line shows the maximum possible
accuracy achieved for respective number of electrodes used.

Fig. 7: EMG signal classification accuracy for N fingers
versus the number of electrodes used

D. Optimal number of electrodes

Figure 7 contains the data of model accuracy for various
target classification sets as the number of electrodes, used
were changed. If one requires to only differentiate between
two finger actions, then two electrodes was adequate to
serve the purpose as more number of electrodes does not
change the accuracy of the model. Similarly if one required
to differentiate between 5 finger classes, than 5 electrodes
usage was recommended. In general it was observed that the
number of electrodes required is same as the distinct number
of classes one targets to predict.

E. Optimal spatial placement of electrodes

From the Figure 6, the highest data point (blue star)
for each electrode subset number represents an optimal
combination of electrode choice which yields highest model
accuracy. It was observed that this choice of electrode subset
followed a pattern. It was found that electrode #3 was always
top choice or within 5% accuracy of the top choice, followed
in order by the electrodes #4, #2, #5, #1 and then #6. The
experimental results indicated that if one wanted to use the
system with 3 sets of differential electrodes, it is optimal
to place them at positions of #3, #4, and #2. This is also
biologically intuitive as most of the flexor muscles lie directly
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beneath those areas as also shown graphically in Figure
4(b). The closer the electrode to the target muscle group,
the higher signal quality is achieved hence allowing a better
classification accuracy.

F. Realtime action classification

The proposed system was designed to render a realtime
classifier. The model was trained on an individual and then
tested in real time. The system constantly measures EMG
signals, and detects possible muscle actions when it sees an
increase in EMG signal energy corresponding to an increase
in RMS value of the signal. As soon as an action is detected,
EMG data is collected and using a classifier the target action
is predicted. The EMG data from start and end of the
action is used to generate a feature vector which is used
as input to the classifiers. It was generally found that the
system collected data for about a hundred milliseconds and
generate a prediction, within a span of tens of milliseconds.
The reduced latency of the realtime classifier system can be
further utilized to various other upper limb actuation systems
including prosthetic hand and wearable exoskeleton devices.

G. Overall cost of the system

It was observed that the overall cost of this system
was around USD 200. The majority of the cost being the
instrumentation amplifier ICs, that can be replaced with
more affordable options. The cost of the entire system
could be further reduced by employing bulk manufacturing
techniques. The simplicity and modular nature of the design
allows for employing cheaper manufacturing techniques as
well as allowing swapping of modules.

IV. CONCLUSION
A novel portable low-cost eight channel sEMG signal

acquisition system was designed, fabricated, and tested as a
proof of concept. To validate the system, the sEMG signals
for single finger actuation and wrist actuation was acquired
multiple times. The collected data was processed and was
used to train an SVM model with relative RMS voltage peaks
as multiple features. The acquisition system characterizes
the five finger flexion movements with an accuracy of 85%
in real time. From the data collected and analysed it was
concluded that the optimal number of electrodes to be used
is roughly equal to the number of target classification classes.
Further, the most optimal placement of these set of electrodes
is as close as possible to the muscle group of interest. The
system was thus shown to be capable of identifying the
action performed and the intensity of the action performed.
The developed sEMG signal acquisition circuit automatically
collected signal over time from an individual, that will pro-
vide insight into the rehabilitation progress of the individual.
Thus avoiding tedious manual evaluation of the individual
and provide personalized exercise and physiotherapy plans.
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